小学数学《圆锥体积》公开课教案(通用18篇)
在教学工作者开展教学活动前,时常要开展教案准备工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么优秀的教案是什么样的呢?以下是小编为大家整理的小学数学《圆锥体积》公开课教案,希望能够帮助到大家。
小学数学《圆锥体积》公开课教案 篇1圆锥的体积教学目的:
使同学初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,发展同学的空间观念。
学具准备:
等底等高的圆柱和圆锥8组,比圆柱体积多的沙土
教学过程:
一、复习
1、圆锥有什么特征?
使同学进一步熟悉圆锥的特征:底面,侧面,高和顶点。
2、圆柱体积的计算公式是什么?
指名同学回答,并板书公式:“圆柱的体积=底面积×高”。同时渗透转化方法在数学学习中的应用。
二、导人新课
我们已经学过圆柱体积的计算公式,那么圆锥的体积是不是和圆柱体积有关呢?今天我们就来学习圆锥体积的计算。
板书课题:圆锥的体积
三、新课
1、教学圆锥体积的计算公式。
师:请大家回亿一下,我们是怎样得到圆柱体积的计算公式的?
指名同学叙述圆柱体积计算公式的推导过程,使同学明确求圆柱的体积是通过切拼生长方体来求得的。
师:那么圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?
先让同学讨论一下用什么方法求,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式。
教师拿出等底等高的圆柱和圆锥各一个,“大家看,这个圆锥和圆柱有什么一起的地方?”
然后通过演示后,指出:“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”
同学分组实验。
汇报实验结果。先在圆锥里装满沙土,然后倒入圆柱。正好3次可以倒满。
多指名说
接着,教师课件边演示边叙述:现在圆锥和圆柱里都是空的。请大家注意观察,看看能够倒几次正好把圆柱装满?
问:把圆柱装满一共倒了几次?
生:3次。
师:这说明了什么?
生:这说明圆锥的体积是和它等底等高的圆柱的体积的。
多找几名同学说。
板书:圆锥的体积=1/3 × 圆柱体积
师:圆柱的体积等于什么?
生:等于“底面积×高”。
师:那么,圆锥的体积可以怎样表示呢?
引导同学想到可以用“底面积×高”来替换“圆柱的体积”,于是可以得到圆锥体积的计算公式。
板书:圆锥的体积= 1/3 ×底面积×高
师:用字母应该怎样表示?
然后板书字母公式:V=1/3 SH
师:在这个公式里你觉得哪里最应该注意?
2、巩固练习
(1)已知圆柱和圆锥等底等高。圆柱的体积是45立方厘米,圆锥的体积是( )立方厘米。已知圆柱和圆锥等底等高。圆锥的体积是20立方厘米,圆柱的体积是( )立方厘米。
(2)求下面圆锥的体积。
已知底面面积是9.6平方米,高是2米。
底面半径是4厘米,高是3.5厘米。
底面直径是4厘米,高是6厘米。
在列式时注意什么?( ) 在计算时,我们怎样计算比较简便?(能约分的要先约分)
(3)判断:
(1)圆锥体积是圆柱体积的1/3( )
(2)圆柱体的体积大于与它等底等高的圆锥体的体积。( )
(3)假如圆柱圆锥等底等高,圆柱体积是圆锥的3倍,圆锥体积是圆柱体积的2/3。( )
(4)圆锥的底面积是3平方厘米,体积是6立方厘米。( )
小学数学《圆锥体积》公开课教案 篇2【教材分析】
本节课属于空间与图形知识的教学,是小学阶段几何知识的重难点部分,是小学学习立体图形体积计算的飞跃,通过这部分知识的教学,可以发展学生的空间观念、想象能力,较深入地理解几何体体积推导方法的新领域,为学生进一步学习几何知识奠定良好的基础。本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进行教学的,教材重视类比,转化思想的渗透,直观引导学生经历“猜测、类比、观察、实验、探究、推理、总结”的探索过程,理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。这样不仅帮助学生建立空间观念,还能培养学生抽象的逻辑思维能力,激发学生的想象力.
【设计理念】
数学课程标准中指出:应放手让学生经历探索的过程,在观察、操作、推理、归纳、总结过程中掌握知识、发展空间观念,从而提高学生自主解决问题的能力。
【教学目标】
1、知识与技能:掌握圆锥的体积计算公式,能运用公式求圆锥的体积,并且能运用这一知识解决生活中一些简单的实际问题。
2、过程与方法:通过“直觉猜想——试验探索——合作交流——得出结论——实践运用”探索过程,获得圆锥体积的推导过程和学习的方法。
3、情感、态度与价值观:培养学生勇于探索的求知精神,感受到数学来源于生活,能积极参与数学活动,自觉养成与人合作交流与独立思考的良好习惯。
【教学重点】
圆锥体积公式的理解,并能运用公式求圆锥的体积。
【教学难点】
圆锥体积公式的推导
【学情分析】
学生已学习了圆柱的体积计算,在教学中采用放手让学生操作、小组合作探讨的形式,让学生在研讨中自主探索,发现问题并运用学过的圆柱知识迁移到圆锥,得出结论。所以对于新的知识教学,他们一定能表现出极大的热情。
【教法学法】
试验探究法小组合作学习法
【教具学具准备】
多媒体课件,等底等高圆柱圆锥各6个,水槽6个(装有适量的水)
【教学课时】
2课时
【教学流程】
第一课时
一、回顾旧知识
1、你能计算哪些规则物体的体积?
2、你能说出圆锥各部分的名称吗?
【设计意图】通过对旧知识的回顾,进一步为学习新知识作好铺垫。
二、创设情景激发激情
展示砖工师傅使用的铅锤体(圆锥),你能测试出它的体积吗?
【设计意图】以生活中的数学的形式进行设置情景,引疑激趣迁移,激发学生好奇心和求知欲。(揭示课题:圆锥的体积)
三、试验探究合作学习(探讨圆柱与圆锥体积之间的关系)
探究一:(分组试验)圆柱与 ……此处隐藏19518个字……满水,然后把水倒入圆柱内,看看几次可将圆柱倒满。现在我们分小组做实验,大家边做边讨论实验要求,如有困难可以看书第23页。
出示小黑板:
1、圆锥的体积和同它等底等高的圆柱的体积有什么关系?
2、圆锥的体积怎么算?体积公式是怎样的?
学生分组做实验,老师巡回指导。
师:我们先来回答第一个问题。在你们做实验用的圆锥的体积和同它等底等高的圆柱的体积有什么关系?
生:圆柱的体积是圆锥体积的3倍。
生:圆锥的体积是同它等底等高的圆柱体权的1/3。
板书:圆锥的体积等于同它等底等高的圆柱体积的1/3。
师:得出这个结论的同学请举手。(略)你们是怎么得出这个结论的呢?
生:我们先在圆锥内装满沙,然后倒人圆柱内。这样倒了三次,正好将圆柱装满。所以,圆锥的体积是同它等底等高的圆柱体积的1/3。
师:说得很好。那么圆锥的体积怎么算呢?
生:可以先算出与它等底等高的圆柱的体积,用底面积乘以高,再除以3,就是圆锥的体积。
师:谁能说说圆锥的体积公式。
生:圆锥的体积公式是V=1/3sh。
师:老师也做了一个同样实验请同学认真看一看。想一想有什么话对老师说吗?请看电视。
师:请大家把书翻到第42页,将你认为重要的字、词、句圈圈划划,并说说理由。
生:我认为"圆锥的体积V等于和它等底等高的圆柱体积的三分之一。"这句话很重要。
生:我认为这句话中"等底等高"和"三分之一"这几个字特别重要。
师:大家说得很对,那么为什么这几个字特别重要?如果底和离不相等的圆锥和圆柱有没有三分之一这个关系呢?我们也来做个实验。大家还有两个是等底不等高的圆锥和圆柱,请同学们用刚才做实验的方法试试看。
师:等底不等高或者等高不等底的圆锥体积不是圆柱体积的1/3。师:可见圆锥的体积等于圆柱体积的三分之一的关键条件是等地等高。
师:下面我们就根据"等底等高的圆锥体积是圆柱体积的1/3"这个关系来解决下列问题。
例l:一个圆锥形零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?
(两名学生板演,老师巡视)
师:这位同学做的对不对?
生:对!
师:和他做的一-样的同学请举手。(绝大多数同学举手)
师:那么这位同学做错在哪里呢?(指那位做错的同学做的)
生:他漏写了1/3。用底面积乘以高算出来的是圆柱的体积,圆锥的体积还要再乘以1/3。
师:对了。刚才我们通过实验知道了圆锥的体积等于同它等底等高的圆柱体积的三分之一,从而推导出圆锥的体积计算公式,即V=1/3sh。我们在用这个公式计算圆锥的体积时,要特别注意,1/3不能漏掉。
小学数学《圆锥体积》公开课教案 篇18教学内容:
教材第16~19页圆锥的认识和体积计算、例1。
教学要求:
l.使学生认识圆锥的特征和各部分名称,掌握高的特征,知道测量圆锥高的方法。
2.使学生理解和掌握圆锥体积的计算公式,并能正确地求出圆锥的体积。
3.培养学生初步的空间观念和发展学生的思维能力。
教具准备:
长方体、正方体、圆柱体等,根据教材第167页自制的圆锥,演示测高、等底、等高的教具,演示得出圆锥体积等于等底等高圆柱体积的的教具。
教学重点:
掌握圆锥的特征。
教学难点:
理解和掌握圆锥体积的计算公式。
教学过程:
一、铺垫孕伏:
1.说出圆柱的体积计算公式。
2.我们已经学过了长方体、正方体及圆柱体(边说边出示实物图形)。在日常生活和生产中,我们还常常看到下面一些物体(出示教材第16页插图)。这些物体的形状都是圆锥体,简称圆锥。我们教材中所讲的圆锥,都是直圆锥。今天这节课,就学习圆锥和圆锥的体积。(板书课题)
二、自主探究:
1.认识圆锥。
我们在日常生活中,还见过哪些物体是这样的圆锥体,谁能举出一些例子?
2.根据教材第16页插图,和学生举的例子通过幻灯片或其他方法抽象出立体图。
3.利用学生课前做好的圆锥体及立体图通过观察、手摸认识圆锥的特点。
(1)圆锥的底面是个圆,圆锥的侧面是一个曲面。
(2)认识圆锥的顶点,从圆锥的顶点到底面圆心的距离是圆锥的高。(在图上表示出这条高)提问:图里画的这条高和底面圆的所有直径有什么关系?
4.学生练习。
口答练习三第1题。
5.教学圆锥高的测量方法。(见课本第17页有关内容)
6.让学生根据上述方法测量自制圆锥的高。
7.实验操作、推导圆锥体积计算公式。
(1)通过演示使学生知道什么叫等底等高。(具体方法可见教材第18页上面的图)
(2)让学生猜想:老师手中的圆锥和圆柱等底等高,你能猜想一下它们体积之间有怎样的关系?
(3)实验操作,发现规律。
在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。(用有色水演示也可)从倒的次数看,你发现圆锥体积与等底等高的圆柱体积之间有怎样的关系?得出圆锥的体积是与它等底等高的圆柱体体积的。
老师把圆柱里的黄沙倒进圆锥,问:把圆柱内的沙往圆锥内倒三次倒光,你又发现什么规律?
(4)是不是所有的圆柱和圆锥都有这样的关系?教师可出示不等底不等高的圆锥、圆柱,让学生通过观察实验,得出只有等底等高的圆锥才是圆柱体积的。
(5)启发引导推导出计算公式并用字母表示。
圆锥的体积=等底等高的圆柱的体积=底面积高
用字母表示:V=Sh
(6)小结:要求圆锥体积必须知道哪些条件,公式中的底面积乘以高,求的是什么?为什么要乘以?
8.教学例l
(1)出示例1
(2)审题后可让学生根据圆锥体积计算公式自己试做。
(3)批改讲评。注意些什么问题。
三、巩固练习
1.做练习三第2题。
学生做在课本上。小黑板出示,指名口答,老师板书。错的要求说明理由。
2.做练习三第4题。学生书面练习,小组交流,集体订正。
四、课堂小结
这节课你学习了什么内容?圆锥有怎样的特征?圆锥的体积怎样计算?为什么?
五、课堂作业
练习三第3题及数训。
六、板书:
圆锥
圆锥的特征:底面是圆,
侧面是一个曲面,展开是一个扇形。
它有一个顶点和一条高。
圆柱的体积=底面积高
圆锥的体积=圆柱体积
圆锥的体积=底面积高V=Sh
文档为doc格式